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1. Mathematical Tools

2. Electromagnetic (Maxwell’s Equations, Boundary 
Conditions,Time varying Fields, Wave propagation).

3. Plane Waves, Electromagnetic Energy and Poynting’s
Theorem.

4. Transmission Lines and Waveguides.

5. Microwave Network Analysis (Impedance and Equivalent 
Voltages and Currents, Scattering Matrix,Signal Flow, 
Waveguide Excitation).

Topics
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6. Microwave Resonators,CKT Design, RF Cavities.

7. Power Sources,Power Dividers and Directional Couplers.

8. RF systems for Accelerators, Linear Structures, Storage Ring 
Cavities.

9. Beam-Cavity Interaction, Beamloading, HOMs and Mode 
Damping , Wakefields, Longitudinal Effects.

10. Special Topic and Review.

Topics
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Mathematical Tools

1. Vector Analysis

2. Calculus

3. Matrices 

4. Complex Numbers

5. DE/PDE

6. Fourier Series

7. Bessel and Green’s Functions
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Vectors

A (Euclidean) vector is an object which

1. Is added to other vector using the “Parallelogram rule”

2. Has a magnitude and direction
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Vectors

Algebraically, 

Vector addition is also associative, I.e., when adding three (or more) 
vectors together we can “add the vector-sum of the first two to the third” 
or “add the first to the vector-sum of the last two.”

Algebraically, 
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Vectors

Vectors can also be scaled by multiplying them with numbers (called 
scalars. This is referred to as scalar-multiplication.

Examples:      AAA
rrr

2       −

Scalar-multiplication is distributive: 
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Vectors

Dot-Product: Given two vectors                     , their dot-product is a 
multiplication rule which returns a scalar quantity. The rule is
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Useful Facts …

•

• If                                                     , then                       are parallel.

• If                                                          , then                      are anti-
parallel.

• If                                                  , then     are 
orthogonal.

Magnitude of vector-sum 
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Useful Facts …

This is essentially the Law of Cosines Cabbac cos2222 −+=
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Useful Facts …

If                                                              , then

This is the Pythagorean Theorem where                    are the legs of a 
right-triangle.

) are vectors( 0cos.,.,0 ⊥==⋅ θifeiBA
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Useful Facts …

If                                   (vectors are parallel) ,ABBA =⋅
vv
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Vector operations

1. Addition (components)

Lets define two vectors,                            as follow:BA
vv

 and 
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Vector operations

Define the vector sum:
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Vector operations
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Vector operations

Dot Product:

Consider two vectors                       :

In terms of components;
BA
vv
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Vectors

[ ] [ ]

[ ]

12213),1331(2,2332;

321
321

3,2,

.
3,2,13,2,1

sin

babababababa
bbb
aaa
kji

ba

baba

bbbbaaa

baba

−=−−=−=∋=

=×=

⊥×=

==

=×=

νννν

νννν

ν

γ

γνν

1     

1 

 and both to  is   of Direction

.b and a betwen angle  and  ,  a

magnitude with  

vvv

v

vvv

vvvvv

vvvv

vvv

av
b
vνv



Advanced Photon Source

RF and Microwave Physics       Fall 2002     ANL

Vector Products

• Properties:
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Vectors
Cartesian components of vectors

Let {e1, e2 , e3 } be three mutually perpendicular unit vectors which form a 
right handed triad. Then {e1, e2 , e3 } are said to form an orthonormal basis. 
The vectors satisfy:
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Vectors

We may express any vector a as a suitable combination of the unit 
vectors {e1, e2 , e3 }. For example, we may write  
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where are scalars, called the components of a in the basis 
{e1, e2 , e3 }. The components of a have a simple physical interpretation. 
For example, if we calculate the dot product a. e1, we find that
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Vectors

Thus,          represent the projected length of the vector a in the direction 
of e1. This similarly applies to                 .

1a
32 , aa

Change of basis

Let a be a vector and let {e1, e2 , e3 } be a Cartesian basis. Suppose that 
the components of a in the basis {e1, e2 , e3 } are known to be 

Now, suppose that we wish to compute the components of a in a second 
Cartesian basis, {r1, r2 , r3 }. This means we wish to find components 

, such that                                to do so, note that
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Vectors
This transformation is conveniently written as a matrix operation

where           is a matrix consisting of the components of a in the basis

{r1, r2 , r3 },          is a matrix consisting of the components of a in the basis

, and          is a “rotation matrix” as follows
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Time Derivatives of Vectors

Let a(t) be a vector whose magnitude and direction vary with time, t. 
Suppose that {I,j,k} is a fixed basis. We may express a(t) in terms of 
components (ax ,ay ,az) in the basis {I,j,k} as a(t)= ax i+ ay j+ az k. The time 
derivative of a is 
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Rotating Basis

It is often convenient to express position vectors as components in a 
basis which rotates with time. 

Let {e1, e2,e3} be a basis which rotates with instantaneous angular 
velocity Ω. Then,
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Gradient of a Vector Field

Let v be a vector field in three dimensional space. The gradient of v is a 
tensor field denoted by grad(v) or v , and is defined so that
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Let                     be a Cartesian basis with origin O in three dimensional space. Let

denote the position vector of a point in space. The 
gradient of v in this basis is given by
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Divergence of a Vector Field

Let v be a vector field in three dimensional space. The divergent of v is a 
scalar field denoted by div(v) or •v , and is defined so that
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Formally, it is defined as trace[grad(v)].
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Curl of a Vector Field

Let v be a vector field in three dimensional space. The curl   of v is a 
vector  field denoted by curl(v) or ×v , and it is best defined in terms of 
its components in a given basis.

Express v as a function of the components of r v = v(x1,x2,x3). The 
curl of v in this base is then given by
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The Divergence Theorem

V

n

S
Let V be a closed region in three 
dimensional space, bounded by an 
oreintable surface S. Let n denote the 
unit vector normal to S, taken so that n 
points out of V. Let u be a vector field 
which is continuous and has 
continuous first partial derivatives in 
some domain containing T. Then
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Definite Integral -- Properties
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Integrals
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Integrals

Examples
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Integrals

Evaluate dxxx )(tan 1−∫
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Integrals – trig substitution

Evaluate dxxx 23 4 −∫
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Matrices

Consider 

is 3x4 matrix composed of 3 rows and 4 columns. 

When the numbers of rows and columns are equal, the matrix is called a square 
matrix. A square matrix of order n is an (nxn) matrix.
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Matrices operation

Vector,                                          is a 1x4  row matrix.

Vector,                                 is a4x1 column matrix. 
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Matrices operation

1. Addition
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Matrices operation

If λ is a constant then,

matrixidentity
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Matrices operation

{
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Matrices operation

An n x n matrix A is called invertible iif there exists an n x n matrix B such that 
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Matrices operation

Let A be a n x m matrix defined by αij, then the transpose of A, 

denoted AT is the m x n matrix defined by δij where δij= αji .

1. (X+Y)T=XT+YT  

2. (XY)T=YTXT  

3.     (XT)T=X
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Matrices operation

Consider a square matrix A and define the sequence of matrices
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Matrices operation

Determinants

Consider the matrix                     . A is invertible if and only if                .

This number is called the determinant of A.

Determinant of 

Properties:









=

dc
ba

A 0≠−bcad

.det bcad
dc
ba

dc
ba

dc
ba

−==







=









( ) ( ) ( )BAAB
dc
ba

dc
ba

dc
ba

ba
dc

dc
ba

ad
db

a
d
ba

AA T

detdetdet  ,

  ,  
0

0
   ,detdet

===

−====

λλ
λ

λλ



Advanced Photon Source

RF and Microwave Physics       Fall 2002     ANL

Matrices operation

In general,

for any fixed i

for any fixed j
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Eigenvalues and Eigenvectors

Let A be a square matrix. A non-zero vector C is called an 
eigenvector of A iff        a number (real or complex)                                  

If λ exists, it is called an eigenvalue of A.

∃ CAC λλ =∋   
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Computing eigenvalues

( ) ( ) 0   0
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This is a linear system for which the matrix coefficient is     .  
This system has one solution if and only if the matrix coefficient is 
invertible,I.e.

Since the zero-vector is a solution and C is not the zero vector, we must 
have 

nIA λ−

( ) 0I-Adet n ≠λ

( ) 0I-Adet n =λ
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Computing eigenvalues

Consider matrix A:

( )

( )( )

2
171  ,

2
171  :

04                            

    

0401
02

21

0det  .
02
21

2

−
=

+
=

=−−

=−−−=
−−
−−

⇒

=−







−

−
=

λλ

λλ

λλ
λ

λ

λ

andsolutions

ontic equatithe quadratoequivalentiswhich

IAA n
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Computing eigenvalues

( ) ( ) ( )

  theis bc)-(ad and 
 ,                  A          of            thecalled is b)(anumber  The

.0)(

0))((

, 2

.detdetdet

2

+
=−++−⇒

=−−−=
−

−









=

−=−=−

bcadba

bcda
dc

ba
yis given bolynomial teristic pthe charac

dc
ba

A, x of orderuare matrifor any sq

IAIAIA n
TT

nn

λλ

λλ
λ

λ

λλλ

trace (denoted tr(A))

Determinant of A. .0)det()(2 =+− AAtr λλ
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Complex Variables

Standard notation: 

θθ
θ

θ

θ

sincos
1,,, 2

ieand    
i real, are  and ryx     

reiyxz

i

i

+=
−=

=+=

where

x and y are the real (Re z) and imaginary (Im z) part of z, respectively.

θ   ,                              zr = is the magnitude, and is the phase or argument arg z.

x

Im z

r
y

θ

Re z

z
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Complex Variables

The complex conjugate of z is denoted by z*; z*=x-iy.

A function W(z) of the complex variable z is itself a complex number 
whose real and imaginary parts U and V depend on the position of z in 
the xy-plane. W(z) = U(x,y) + iV(x,y).

θierzW    or
xyV       yxU        

ixyyxiyxzzW

222

22

2222

2
2)()(

==
=−=

+−=+==
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Complex Functions

1. Exponential 

[ ]
[ ]

)exp()exp(
)sin)(cossin(cos

)sincoscos(sinsinsincoscos

)sin()cos(

,

)exp()exp(

)sin(cos)exp(

)exp(

wz                 
vivyiyuexe                 

vyvyivyvyuexe                 

yyivyuxew)exp(z

then  ivuw  and  iyxz if

zz
dz
d

yiyxez

iyxz     withzez

=
++=

++−=

++++=+

+=+=

=

+=

+==
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Complex Functions

Circuit problem

R
L

C

E

I

dt
dVCi

dt
diLV

RIV

C

L

R

=

=

=

)Im(

)Im()Im()sin()(
ti

titii

CeI

BeeAeVtAtV
ω

ωωφφω

=

==⇒+=

capacitor. a for  
Ci

IV or IVCi and inductor) (for  LIiV

beI  if   AeiAe
dt
d tititi

ω
ωω

ω ωωω

===⇒

==

,

,.
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Complex Functions

R
L

C

E

I

Kirchoff’s law:

( )

)sin(
1

1
Im)Im(

1

tan,
1

1

2
2

)(
2

2

2
2

φω

ω
ω

ω
ω

ω
ω

φ

ω
ω

ω
ω

ω
ω

ω
ω

φωω

φ

ωω

+







 −+

=



























 −+

==

−
=







 −+

=







 −+

=⇒

=++

==++

+

t

C
LR

a

e

C
LR

abeI

R
C

L
    e

C
LR

ab

C
LiR

ab

aRb
Ci

bLbi

aE    aeRI
Ci

ILIi

titi

i

titi
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Differential Equations

1st order DE has the following 
form:

The general solution is given by 

)()( xqyxP
dx
dy

=+

( )∫

∫

=

+
=

dxxpxu 
xu

Cxqxu
y

)(exp)(

,
)(
)()(

U(x) is called the integrating factor.
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Differential Equations

Find the particular solution of 

• step 1: identify p(x) and q(x).

• step 2: Evaluate the integrating factor

• We have 

.2)0(),(cos)tan( 2 ==+′ y  xyxy

)(cos)()tan()( 2 xxq and   xxp ==

)sec()( ))ln(sec())ln(cos()tan( xeeexu xxdxx ==== −∫

∫ ∫ == )sin()cos()(cos)sec( 2 xdxxdxxx

)cos()2)(sin(

2)0(),cos())(sin(
)sec(

)sin(

xxy

Cy  xCx
x

Cxy

+=

==+=
+

=

Example 1
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Differential Equations

Example 2

Find solution to 
( ) .04,1)(cos)sin()(cos 32 =+−=′ πy    ytytt

Rewrite the equation:

)sin()(cos
1

)sin(
)cos(

)sin()(cos
1

)sin(
)cos(

)sin()(cos
1

)sin()(cos
)(cos

2

222

3

tt
y

t
ty

tt
y

t
t

tt
y

tt
ty

=+′→

+−=+−=′

Hence the integration factor is given by

)sin()( )sin(ln)sin(
)cos(

teetu t
dt

t
t

===
∫−



Advanced Photon Source

RF and Microwave Physics       Fall 2002     ANL

Differential Equations

Example 2

The general solution can be obtained as

),tan(
)(cos

1
)sin()(cos

1)sin(

)sin(
)sin()(cos

1)sin(

22

2

tdt
t

dt
tt

t

t

Cdt
tt

t
y

==

+
=

∫ ∫

∫

Since we have
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)csc()sec()(
1,022

0)
4

(

)csc()sec(
)sin()cos(

1
)sin(

)tan(

ttty                 
CC

y                          

tCt
t

C
tt

Cty

−=
−=⇒=+

=

+=+=
+

=

π

We get

Differential Equations

Example 2

The initial condition                                  implies
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Separation of Variables-PDE

This method can be applied to partial differential equations, 
especially with constant coefficients in the equation. Consider one-
dim wave equation:

string. stretchedthe  of n)(deflectio ntdisplacemethe is       ),(,2

2
2

2

2

txu
x
uc

t
u

∂
∂

=
∂
∂

0),0( =tu 0),( =tLu

X=0 X=L

t∀ (BC’s)

  g(x)(x,0)    and   =
∂
∂

=
t
uxfxu )()0,( (IC’s)

Basic idea:

1. Apply the method of separation to obtain two ordinary DE’s

2. Determine the solutions that satisfy the bc’s.

3. Use Fourier series to superimpose the solutions to get final 
solution that satisfies both the wave equation and the initial 
conditions.
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Separation of Variables-PDE

We seek a solution of the form

)()()()(

)()()()(

)()(),(

2

2

2

2

tx
x
u

x
u

x
tx

x
u

tx
t
u

t
u

t
tx

t
u

txtxu

ΤΧ ′′=
∂
∂

=






∂
∂

∂
∂

⇒ΤΧ ′=
∂
∂

ΤΧ=
∂
∂

=






∂
∂

∂
∂

⇒ΤΧ=
∂
∂

ΤΧ=

     

      &&&

Differentiating, we get

and

Thus the wave equation becomes

( ) ( )

Τ
Τ

=
Χ
Χ ′′

ΤΧ

ΤΧ=ΤΧ ′′

2

2 ),()(1)()(

c

txoduct by the prdividing

tx
c

tx

&&

&&
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Separation of Variables-PDE

Τ=Τ

Χ=Χ ′′

==
Τ
Τ

=
Χ
Χ ′′

c
c
c

&&

&&
cconstant

2

We allow the constant to take any value and then show that only certain 
values are allowed to satisfy the boundary conditions. We consider the 

three possible cases for c, namely c=p2 positive, c=0,and c=-p2. 
These give us three distinct types of solution that are restricted by the 
initial and boundary conditions.

With c=0
EDtt

xx
+=Τ⇒=Τ

Β+Α=Χ⇒=Χ ′′

)(0
)(0

           
          

&&
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Separation of Variables-PDE
c=p2

pxpx

xx

BeAex

ppp

xexex

pc

p

−+=Χ

±=⇒=⇒=Χ−Χ

Χ==Χ′′⇒=Χ

=Τ−Τ

=Χ−Χ′′

)(

,0

)()(,)(

0

0

2222

22

22

2

λλλ

λλ λλ

               

         

&&

BC’s  in x⇒A=0, B=0. Trivial solution

Solution:
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Separation of Variables-PDE
2pc −=

integer. anis    
 solution trivial-Non solution. trivialthe have we  0,B if

   at     at BC
is        solutionthe Thus 
    where   

nnπpL
pL

pLBLLxAx
pxBpxAx

ipp

ex

pc

p

x

,
0sin

sin)(,00
sincos)(

)(

0

0

22

22

2

=⇒
=⇒=

=Χ==⇒=
+=Χ

±=⇒−=

=Χ

=Τ+Τ

=Χ+Χ′′

λλ

λ

&&
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Separation of Variables-PDE

Similarly;

∑
∞

=






 +=







 +=

=
+=Τ

1
sincossin),(

sincossin),(

),(.
sincos)(

n
nn t

L
cnEt

L
cnDx

L
ntxu

t
L

cnEt
L

cnDx
L

nAtxu

txuLnp
pctEpctDt

πππ

πππ
π is  for solutiona  Thus,  

We can set A=1 without any loss of generality.
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Separation of Variables-PDE

Applying IC’s. Setting t=0.

∑

∑

∞

=

∞

=

=

==

=

1

1

sin)(

,1)0cos(0)0sin(

sin)0,(

n
n

n
n

x
L

nDxf

x
L

nDxu

π

π

   and   since 

To determine the constants, Dn, we multiply both sides of the equation 
by                   and integrate from x=0 to x=L.x

L
mπsin

∑ ∫∫

∫ ∑∫

∞

=

∞

=











=









=

1 00

0 10

sinsinsin)(

.sinsinsin)(

n

L

n

L

L

n
n

L

dxx
L

mx
L

nDxdx
L

mxf

dxx
L

mx
L

nDxdx
L

mxf

πππ

πππ
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Separation of Variables-PDE
Using orthogonality condition:

.
2

sin)(
0

LDxdx
L

mxf m

L
=∫

π

Replacing m by n:

.sin)0,(

,0

.sincossin

).,(

.sin)(2

1

1

0

x
L

nE
L

cnx
t
u

t

t
L

cnDt
L

cnEx
L

m
L

cn
t
u

txu

xdx
L

nxf
L

D

n
n

nn
n

L

n

ππ

ππππ

π

∑

∑

∫

∞

=

∞

=

=
∂
∂

=







 −=

∂
∂

=

 at

 of derivativetime the requires  IC otherthe 



Advanced Photon Source

RF and Microwave Physics       Fall 2002     ANL

.sin)(
1

x
L

nE
L

cnxg n
n

ππ∑
∞

=
=

IC, using

Separation of Variables-PDE

Repeat the same procedure 

( ).sincossin),(

sin)(2

.
2

sin)(

1

0

0

t
L

cnEt
L

cnDx
L

ntxu

xdx
L

nxg
cn

E

LE
L

cmxdx
L

mxg

n
n

n

L

n

m

L

πππ

π
π

ππ

+=

=⇒

=

∑

∫

∫

∞

=
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Fourier series

)).sin()cos((
1

0 nxBnxAA n
n

n ++ ∑
∞

=
A Fourier polynomial is an expression of the form

).(
,,...,1,,

)).sin()cos((

))sin()cos((...))sin()cos(()(

0

1
0

110

xF    
                                nib and aa                        

kxbkxaaF

nxbnxaxbxaaxF

n

ii

n

k
kkn

nnn

=

++=

+++++=

∑
=

Which may be written as

The constants are called the coefficients of 
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Fourier series

The Fourier polynomials are 2 π-periodic functions. 

)).sin()cos((
1

0 kxbkxaaF
n

k
kkn ∑

=
++=

nk dxkxxFb

nk dxkxxFa

dxxFa

nk

nk

n

≤≤=

≤≤=

=

∫

∫

∫

−

−

−

1,)sin()(1

1,)cos()(1

,)(
2
1

0

π

π

π

π

π

π

π

π

π
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Fourier series

Example

Find the Fourier series of the function .,)( ππ ≤≤−= x  xxf
Since                  is odd, then                             For any                 

we have

)(xf .0,0 ≥= n foran ,1≥n

.
3

)3sin(
2

)2sin()sin(2~)(

.)1(2)cos(2

)sin()cos(1)sin(1

1

2







 +−

−=−=⇒





 +−==

+

−
−∫

L
xxxxf  Hence

n
n

n
b

n
nx

n
nxxdxxxb

n
n

n

π

ππ

π

π

π

π
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Fourier series

Example
Find the Fourier series of the function with period 2L defined by







<<−

<<−
=

Lt        
L
t

tL            
tf

01

01
)(

-3L - L L 3L t

1

LT
LT ππω ===

2,2

Fourier series given by

)sin()cos(
2

~)(
1

0 tnbntnaatf
n

n ωω∑
∞

=
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Fourier series

Coefficients found by evaluating

 dttnt
T

T
f

Tnb  dttnt
T

T
f

Tna )sin()(
2
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2
,)cos()(
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ωω ∫∫ −
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22122

22
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0
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)12(
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Fourier series
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Fourier series

Calculate a0

[ ]
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Fourier series

Calculating bn
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π
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Fourier series

We now know that 
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Fourier transform

The continuous time Fourier transform of            is defined as)(tx

dfeftx

dtetxf

fti

fti

∫

∫

∞

∞−

∞

∞−
−

=

=

π

π

χ

χ

2

2

)()(

,)()(
and the inverse transform is defined as  

A common notation is to define the Fourier transform in terms of
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ωω
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ω
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∫
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Fourier transform properties         symmetry

dtetxf fti∫
∞

∞−
−= πχ 2)()(

),()()(

,)2sin()()2)(cos(()(

.))2sin()2))(cos(()(()(

fiff

dtfttxifttxf
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The odd components of the integrand contribute zero to the integral. 
Hence

where
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,)2cos()()(
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Odd and Even Functions

Even Odd

Symmetric                      Anti-symmetric

Cosines                       Sines

Transform is real* Transform is 
imaginary

*for real-valued signals

)()()()( tftf               tftf −−=−=−

-T/2 T/20-t t

-T/2

T/20

-t

t• Important property of even and odd 
functions for any L,

0)(

)(2)(
0

=

=

∫
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−

−

L

L

LL

L

dttf

dttfdttf If f is even

If f is odd
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Convolution Theorem

Let F, G, H denote the Fourier Transforms of signals f, g, and h
respectively.

g = f*h          g = fh
implies                 implies

G = FH                  G = F*H
Convolution in one domain is multiplication in the other and vice versa.

))(())(()()((
))(())(()()((

tgtftgtf
tgtftgtf

ℑ∗ℑ=ℑ
ℑℑ=∗ℑ
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Convolution
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Convolution
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